Recent Results From NA48/2 Experiment @ CERN-SPS

Simone Bifani
University of Torino – Experimental Physics Department
INFN – Torino

on Behalf of the NA48/2 Collaboration
Cambridge, CERN, Chicago, Dubna, Edinburgh, Ferrara, Firenze, Mainz,
Northwestern, Perugia, Pisa, Saclay, Siegen, Torino, Vienna

Torino Group: Simone Bifani, Cristina Biino, Silvia Goy Lopez, Flavio Marchetto

IV INFN Torino Congress
January 23rd 2007
NA48/2 Experimental Setup

CP Violating Charge Asymmetry in $K^\pm \rightarrow \pi^\pm \pi^0 \pi^0$ Decay

"Cusp" Effect in $K^\pm \rightarrow \pi^\pm \pi^0 \pi^0$ Decay

Rare K^\pm Decays
NA48/2 Experimental Setup
Some History

NA48 (1997-2001): Direct CP-Violation in neutral K

\[\text{Re}(\epsilon' / \epsilon) = (14.7 \pm 2.2) \cdot 10^{-4} \]

NA48/1 (2002): Rare K_S decays

\[\text{BR}(K_S \rightarrow \pi^0 e^+e^-) = (5.8^{+2.8}_{-2.3} \pm 0.8) \cdot 10^{-9} \]
\[\text{BR}(K_S \rightarrow \pi^0 \mu^+\mu^-) = (2.8^{+1.5}_{-1.2} \pm 0.2) \cdot 10^{-9} \]

NA48/2 (2003-2004): Direct CP-Violation in charged K

P326 (2009-2010): Very Rare K Decays

\[K^+ \rightarrow \pi^+ \nu \nu \]

…and many other results on kaon and hyperon decays

1997 \(\epsilon' / \epsilon \) run \(K_L + K_S \)

1998 \(\epsilon' / \epsilon \) run \(K_L + K_S \)

1999 \(\epsilon' / \epsilon \) run \(K_L + K_S \)

2000 \(K_L \) only \(K_S \) High Intensity

2001 \(\epsilon' / \epsilon \) run \(K_L + K_S \)

2002 \(K_S \) High Intensity

2003 \(K^\pm \) High Intensity

2004 \(K^\pm \) High Intensity
Simultaneous Beam

2-3M K/spill ($\pi/K \sim 10$)
π decay products stay in pipe
Flux ratio: $K^+/K^- \sim 1.8$

Simultaneous K^+ and K^- beams:
large charge symmetrization of experimental conditions

Beams coincide within
~ 1mm all along 114m decay volume

$\sim 7 \times 10^{11}$
p/spill
400 GeV/c

Front-end achromat:
Momentum selection

$P_K = (60 \pm 3)$ GeV/c

Quadrupole, Quadruplet:
Focusing μ sweeping

Second achromat:
Cleaning Beam spectrometer

$\delta P_K / P_K = 0.7$
$\delta_{x,y} \sim 100 \mu$m
Magnetic spectrometer (4 DCHs):
 > 4 view / DCH -> high efficiency
 > $\sigma_P/P = 1.0\% + 0.044\% \cdot P$ [GeV/c]

Hodoscope:
 > Fast trigger
 > $\sigma_t = 150$ps

Electromagnetic calorimeter (LKr):
 > High granularity, quasi-homogeneous
 > $\sigma_E/E = 3.2\%/\sqrt{E} + 9%/E + 0.42%$ [GeV]

Hadron calorimeter, muon and photon vetoes

Trigger:
 > Fast hardware trigger (L1): hodoscope & DCHs multiplicity
 > Level 2 trigger (L2): on-line processing of DCHs & LKr information
Data Taking

Run periods:
- 2003: ~ 50 days
- 2004: ~ 60 days

Total statistics in 2 years:
- \(K^\pm \rightarrow \pi^\pm \pi^+ \pi^- \): ~ \(4 \cdot 10^9\)
- \(K^\pm \rightarrow \pi^\pm \pi^0 \pi^0 \): ~ \(1 \cdot 10^8\)

\(\rightarrow \) > 200 TB of data recorded

Rare \(K^\pm \) decays can be measured down to BR ~ \(10^{-9}\)
CP Violating Charge Asymmetry in $K^\pm \to \pi^\pm \pi^+ \pi^-$ Decay
Major milestones in CP-Violation history:

> 1988, 1999: Direct CP-Violation in K^0 (NA31, E731, NA48, KTeV)

> 2001: Indirect CP-Violation in B^0 (BaBar, Belle)

> 2004: Direct CP-Violation in B^0 (Belle, BaBar)

Look for CP-Violation in K^\pm
(no mixing \rightarrow only Direct CPV is possible)
Introduction (I)

The best two K^\pm decay modes:

- $\mathrm{BR}(K^\pm \to \pi^\pm \pi^+ \pi^-) = 5.57\%$ "Charged"
- $\mathrm{BR}(K^\pm \to \pi^\pm \pi^0 \pi^0) = 1.73\%$ "Neutral"

Kinematics:

$s_i = (P_K - P_{\pi_i})^2, \ i = 1, 2, 3 \ (3 = \pi_{\text{odd}})$
$s_0 = (s_1 + s_2 + s_3) / 3$
$u = (s_3 - s_0) / m_{\pi}^2$
$v = (s_2 - s_1) / m_{\pi}^2$

Matrix element:

$|M(u,v)|^2 \sim 1 + gu + hu^2 + kv^2$

"Charged" mode

$g = -0.2154 \pm 0.0035$

$|h|, |k| \sim 10^{-2}$

Kaon rest frame:

$u = 2m_K \cdot (m_K/3 - E_{\text{odd}}) / m_{\pi}^2$
$v = 2m_K \cdot (E_1 - E_2) / m_{\pi}^2$

Direct CP violating quantity:

slope asymmetry

$A_g = (g^+ - g^-) / (g^+ + g^-) \neq 0$
Theoretical predictions:

- **Standard Model:**
 \[A_g = 10^{-6} \pm 5 \cdot 10^{-5} \]

- **Models Beyond the SM:**
 enhancement of the \(A_g \) value

Experimental results:

- **“Charged” mode:**
 \[A_g = (22 \pm 15_{\text{stat}} \pm 37_{\text{syst}}) \cdot 10^{-4} \]
 (HyperCP - 54 \cdot 10^6 \text{ evt.})

- **“Neutral” mode:**
 \[A_g = (2 \pm 19) \cdot 10^{-4} \]
 (TNF - 620 \cdot 10^3 \text{ evt.})
Introduction (III)

What’s new in NA48/2 measurement?

› Simultaneous K^+ and K^- beams, superimposed in space, with momentum spectra (60 ± 3) GeV/c

› Equalize K^+ and K^- acceptances by frequently alternating polarities of relevant magnets

› Detect asymmetry exclusively considering slopes of ratios of normalized u distributions
In the 2003+2004 data sample $3.11 \cdot 10^9$ $K^\pm \rightarrow \pi^+\pi^+\pi^-$ have been selected:

- $K^+ : 2.00 \cdot 10^9$ events
- $K^- : 1.11 \cdot 10^9$ events
Results In SuperSamples

<table>
<thead>
<tr>
<th>Run</th>
<th>SuperSample</th>
<th>$\Delta g \cdot 10^4$</th>
<th>X^2 of the R(u) fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>0</td>
<td>-0.8 ± 1.8</td>
<td>30/26</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-0.5 ± 1.8</td>
<td>24/26</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-1.4 ± 2.0</td>
<td>28/26</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.0 ± 3.3</td>
<td>19/26</td>
</tr>
<tr>
<td>2004</td>
<td>4</td>
<td>-2.0 ± 2.2</td>
<td>18/26</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.4 ± 2.6</td>
<td>20/26</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5.0 ± 2.2</td>
<td>26/26</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.5 ± 2.1</td>
<td>10/26</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.4 ± 2.3</td>
<td>23/26</td>
</tr>
<tr>
<td>Combined</td>
<td>0.6\pm0.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results

- A factor ~20 better precision than the previous measurements
- Uncertainties dominated by those of statistical nature
- Design goal reached. There is still some room to improve the systematic uncertainty
- Result compatible with the Standard Model predictions

Based on the full 2003+2004 data sample

\[\Delta g = (0.6 \pm 0.7_{\text{stat}} \pm 0.4_{\text{trig}} \pm 0.6_{\text{syst}}) \cdot 10^{-4} \]

\[= (0.6 \pm 1.0) \cdot 10^{-4} \]

\[A_g = (-1.3 \pm 1.5_{\text{stat}} \pm 0.9_{\text{trig}} \pm 1.4_{\text{syst}}) \cdot 10^{-4} \]

\[= (-1.3 \pm 2.3) \cdot 10^{-4} \]

Final 2003 result published: PLB634 (2006) 474-482

Measurements of \(A_g \)
"Cusp" Effect in $K^\pm \rightarrow \pi^\pm \pi^0 \pi^0$ Decay
A "Cusp"

- From $K^\pm \rightarrow \pi^\pm\pi^0\pi^0$ decay we observed an anomaly in the M_{00}^2 invariant mass distribution in the region around $M_{00}^2 = (2m_{\pi^+})^2 = 0.07792 \text{ (GeV/c}^2\text{)}^2$

- This anomaly has been interpreted as a final state charge exchange scattering process of $K^\pm \rightarrow \pi^\pm\pi^+\pi^-(\pi^+\pi^- \rightarrow \pi^0\pi^0)$

- The parameter a_0-a_2 (difference between the S-wave $\pi\pi$ scattering lengths in the isospin $I=0$ and $I=2$ states) can be precisely measured using this sudden anomaly ("cusp")
Standard Dalitz plot parameterization shows deficit in data before "cusp":

Event Selection

![Graph showing Event Selection](image)

Standard parametrization

- Whole region: $X^2/\text{ndf}=9225/149$
- Above cusp: $X^2/\text{ndf}=133/110$

Equation

$\Delta = \frac{(\text{Data-Fit})}{\text{Data}}$

Variables

- M_{00}^2 [(GeV/c2)2]
- Events / 0.00015 [(GeV/c2)2]

![Graph showing Standard parametrization](image)
Re-scattering model: two amplitudes contribute to $K^\pm \to \pi^\pm \pi^0 \pi^0$

$M(K^\pm \to \pi^\pm \pi^0 \pi^0) = M_0 + M_1$

- M_0: Direct Emission
- M_1: Charge Exchange in final state of $K^\pm \to \pi^\pm \pi^+ \pi^- (\pi^+ \pi^- \to \pi^0 \pi^0)$

The singularity in the invariant mass spectrum at $\pi^+ \pi^-$ threshold is mainly caused by the destructive interference of M_0 and M_1

The effect is present below the threshold and not above it (re-scattering model at one-loop (N. Cabibbo: PRL 93 (2004) 121801))
More complete formulation of the model including all re-scattering processes at one-loop and two-loop level (N. Cabibbo and G. Isidori: JHEP 0503 (2005) 21) has been used to extract NA48/2 results (systematics: acceptance, trigger efficiency and fitting interval):

- \(g_0 = 0.645 \pm 0.004_{\text{stat}} \pm 0.009_{\text{syst}} \)
- \(h' = -0.047 \pm 0.012_{\text{stat}} \pm 0.011_{\text{syst}} \)
- \((a_0-a_2) \cdot m_{\pi^+} = 0.268 \pm 0.010_{\text{stat}} \pm 0.004_{\text{syst}} \pm 0.013_{\text{ext}} \)
- \(a_2 \cdot m_{\pi^+} = -0.041 \pm 0.022_{\text{stat}} \pm 0.014_{\text{syst}} \)

Based on partial sample of 2003 data

2003 results published:

Measurements of \((a_0-a_2) \cdot m_{\pi^+}\):

- a) NA48 result
 - PLB 633 (2006)
- b) DIRAC result
 - PRL 619 (2005)
- c) G.Colangelo et al.
 - NPB 603 (2001)
- d) J.R.Pelaez et al.
 - PRD 71 (2005)
Rare K^\pm Decays
Rare K^\pm Decays

Statistics usually at least one order of magnitude above previous experiments. Several channels not yet observed.

\[K^\pm \rightarrow \pi^+\pi^-e^\pm\nu \quad (4.09 \pm 0.09) \cdot 10^{-5} \]
\[K^\pm \rightarrow \pi^0\pi^0e^\pm\nu \quad (2.2 \pm 0.4) \cdot 10^{-5} \]
\[K^\pm \rightarrow \pi^+\pi^-\mu^\pm\nu \quad (1.4 \pm 0.9) \cdot 10^{-5} \]
\[K^\pm \rightarrow \pi^\pm\pi^0\gamma \quad (2.75 \pm 0.15) \cdot 10^{-4} \quad \text{Silvia Goy Lopez} \]
\[K^\pm \rightarrow \pi^\pm\gamma\gamma \quad (1.10 \pm 0.32) \cdot 10^{-6} \quad \text{Simone Bifani} \]
\[K^\pm \rightarrow \pi^\pm e^+e^-\gamma \]
\[K^\pm \rightarrow \pi^\pm\pi^0\gamma\gamma \]
\[K^\pm \rightarrow \pi^\pm e^+e^- \quad (2.88 \pm 0.13) \cdot 10^{-7} \]
$K^\pm \rightarrow \pi^\pm \pi^0 \gamma$

Two amplitudes:
- Inner Bremsstrahlung (IB)
- Direct Emission (DE)

Interference (INT) is possible between IB and electric part of DE

Frac(DE) = $(3.35 \pm 0.35_{\text{stat}} \pm 0.25_{\text{syst}})\%$
Frac(INT) = $(-2.67 \pm 0.81_{\text{stat}} \pm 0.73_{\text{syst}})\%$

Based on a partial sample of 2003 data
Summary

> The preliminary result on the Direct CP violating charge asymmetry in \(K^\pm \rightarrow \pi^\pm \pi^+ \pi^- \) based on the whole statistics is:

\[
A_g = (-1.3 \pm 1.5_{\text{stat}} \pm 0.9_{\text{trig}} \pm 1.4_{\text{syst}}) \cdot 10^{-4}
= (-1.3 \pm 2.3) \cdot 10^{-4}
\]

> A new “cusp” structure in \(K^\pm \rightarrow \pi^\pm \pi^0 \pi^0 \) was observed (\(\pi\pi \) final state charge exchange process of \(K^\pm \rightarrow \pi^\pm \pi^+ \pi^- \)) which provides a new method for the extraction of the \(\pi\pi \) scattering lengths:

\[
(a_0-a_2) \cdot m_{\pi^+} = 0.268 \pm 0.010_{\text{stat}} \pm 0.004_{\text{syst}} \pm 0.013_{\text{theor}}
\]

> The first measurement of Direct Emission and Interference terms in \(K^\pm \rightarrow \pi^\pm \pi^0 \gamma \) based on \(~30\%\) of the total statistics has been performed:

\[
\text{Frac(DE)} = (3.35 \pm 0.35_{\text{stat}} \pm 0.25_{\text{syst}}) \%
\]
\[
\text{Frac(INT)} = (-2.67 \pm 0.81_{\text{stat}} \pm 0.73_{\text{syst}}) \%
\]